Technical Report

DSG-TR-2002-11
[image: image3.bmp]
Software Specifications for GELLO:

An Object-Oriented Query and Expression Language for Clinical Decision Support

Margarita Sordo, D.Phil., Omolola Ogunyemi, Ph.D.,

Aziz A. Boxwala, M.B.B.S., Ph.D., Robert A. Greenes, M.D., Ph.D.

Decision Systems Group, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA

msordo@dsg.harvard.edu

January 2003
(
Copyright, Decision Systems Group, 2002, 2003
Contents
41 Introduction

41.1
What is GELLO?

62
Requirements for Query and Expression Languages in the Clinical Context

62.1
Underlying Data Model

62.2
Queries, Expressions and Clinical Guidelines

73
GELLO: Goals and Properties

84
OCL

94.1
OCL Language Description

94.1.1
Relation to the UML Metamodel

94.1.1.1
Self

94.1.1.2
Specifying the UML context

94.1.1.3
Invariants

94.1.1.4
Pre- and Postconditions

94.1.1.5
Package Context

94.1.2
Basic Values and types

94.1.2.1
Types from the UML Model

94.1.2.2
Enumeration Types

104.1.2.3
Let Expressions and «definition» Constraints

104.1.2.4
Type Conformance

104.1.2.5
Casting

104.1.2.6
Precedence Rules

104.1.2.7
Infix Operators

104.1.2.8
Keywords

104.1.2.9
Undefined Values

104.1.3
Objects and Properties

104.1.3.1
Reference to Object Properties

114.1.3.2
Combining Properties

114.1.3.3
Pathnames for Packages

114.1.3.4
Predefined Properties on all Objects

114.1.3.5
Features on Classes Themselves

114.1.4
Collections and Collection Operators

114.1.4.1
Collections

114.1.4.2
Collection Operators

125
OCL Features Not Included in GELLO

126
GELLO

136.1
GELLO Types

136.1.1
Basic Types

136.1.2
Model Types

136.1.3
Collection Types

146.1.4
Tuple Type

146.2
Names

146.3
Properties

146.3.1
Attributes

156.3.2
Methods

156.3.2.1
Method Parameters

156.4
Variable Declaration

156.4.1
Mechanisms for Declarations: Creating a Variable

156.4.2
Assigning Values to Temporary Variables: the let Operator

166.4.3
Scope of Declarations

166.5
Reflection

166.6
Casting

176.7
Built-in Operators

176.7.1
Arithmetic Operators “+”, “-” and “*”

176.7.2
Arithmetic Operator “/”

176.7.3
Comparison Operators “=”, “>”, “<”, “>=”, “<=”, “<>”

186.7.4
Boolean Operators

186.8
Collection Operators

196.9
Tuple Operators

196.10
If Expression

207
GELLO Syntax

207.1
GELLO Lexical Grammar

207.2
GELLO BNF Syntax (under revision)

218
GELLO Queries

218.1
Return Type of a Query

218.2
Evaluation of Queries

218.3
Example of a Query (under revision)

228.4
Declarativeness of Queries

229
GELLO Expressions

239.1
Type of an Expression

239.2
Normal and Abrupt Completion of Evaluation

239.2.1
Handling Exceptions

239.3
Evaluation of Expressions

239.3.1
Argument Lists

239.4
Example of Expressions (under revision)

2310
Summary of Pending Issues

2310.1.1
Basic data types

2410.1.2
Collection types and operators

2410.1.3
Tuples and Joins

2410.1.4
Joins

2410.1.5
Declarativeness of Queries

2410.1.6
GELLO BNF

24References

1 Introduction

This document reflects issues discussed with the CDA group at the last teleconference (11/27/02).
 The following requirements have been addressed in this document:

· Built-in and collection types.

· Syntax of “.” and “->” operators.
· Creation of temporary variables.

· Assignment of values to variables.
Originally, this document was intended as a draft of a software specification for GELLO query and expression languages. However, during the process of writing up these specifications, we came across important issues we believed needed further discussion. Our efforts to meet the requirements discussed at the last CDA teleconference and from telephone conversations with Gunther Schadow, led to the following:

· We identified inconsistencies between HL7 and OCL collection types and operators.
· We found that the notation for queries has proved cumbersome, particularly when considering that joins and Cartesian products would be desirable operations for collecting information.
· Also we found that the problem of including more declarative methods for sorting information may need to be included.

· Lastly, it remained unclear whether to consider integer and real basic types as part of the GELLO grammar or as a part of the HL7 RIM data model.

We propose the inclusion of a tuple data type as part of the HL7 RIM data model to handle aggregated data. This seems to solve the problem of representing information that includes elements of different types. All the above issues are highlighted in this document. The relevant sections include a shadowed textbox describing the identified problem and proposed solution which we submit for discussion.
The general structure of the document has been kept as in previous versions. We expect that, having agreed that OCL is a promising approach for implementing query and expression languages, the issues prompted in this document will further clarify and guide the implementation of such languages.
1.1 What is GELLO?
GELLO is a purpose-specific, class-based, object-oriented (OO) language that is built on existing standards. GELLO includes both query and expression sublanguages, which we refer to collectively as the GELLO language. GELLO is based on the Object Constraint Language (OCL). Relevant components of OCL have been selected and integrated into GELLO query and expression languages to provide a suitable framework for manipulation of clinical data for decision support in health care.
The GELLO language can be used to:

· Build up queries to extract and manipulate data from medical records.
· Construct decision criteria by building up expressions to reason about particular data features/values. These criteria can be used in decision-support knowledge bases such as guidelines.

· Create expressions, formulae, and queries for applications within other HL7 standards.
The query and expression languages share a common OO data model since the expression language must use the results of the query language.

The query language has been designed in the context of the guideline execution model proposed in the HL7 DSTC. This model proposes the use of a vMR that provides a standard interface to heterogeneous medical record systems. While the query language does not depend on the specific classes or tables in the vMR, it does rely on the general framework of the vMR.

The expression language can be used for specifying decision criteria, and abstracting or deriving summary values. The object-oriented approach for the language has the flexibility and extensibility that is needed for implementation in a broad range of applications.

The expression language is strongly typed and object-oriented. In order to facilitate the process of encoding and evaluation of expressions and more importantly, to maximize the shareability of such queries and expressions, GELLO only provides basic built-in data types, while providing the necessary mechanisms to access an underlying data model with all its associated classes and methods. This is especially important in enabling guidelines to successfully support different data models, as classes and relationships specified could vary from one data model to another.
This document describes the software specification for GELLO expression and query languages based on the standards produced by the HL7 Decision Support Technical Committee (DSTC). This specification is organized as follows:

Section 2 describes the requirements for query and expression languages in the clinical context. Section 3 describes the main goals and properties of GELLO to meet such requirements.

Section 4 briefly describes the Object Constraint Language (OCL) features. Section 5 lists OCL features not included in the GELLO language specification, while section 6 describes OCL features included in GELLO query and expression languages, including basic data types, model types (classes in the data model), attributes, and variables. Variables are created as instances of classes defined in the HL7 data model. Variables are strongly typed temporal storage locations with a predefined, limited scope. In order to preserve GELLO as a side-effect-free language, the creation of variables as instances of classes is delegated to the underlying data model; hence such classes should provide the appropriate mechanisms. It also describes GELLO built-in operators, their syntax and semantics, and discusses the tuple type as an aggregation type supported by the data model. Section 7 describes the syntax of GELLO grammar. Section 8 (under revision) describes queries in GELLO, and how they are used to retrieve information from a vMR. Similarly, section 9 (under revision) describes GELLO expressions used to build decision criteria, perform abstraction or derive summary values. Section 10 summarizes important issues addressed in this document
2 Requirements for Query and Expression Languages in the Clinical Context

A major obstacle to sharing clinical knowledge is the lack of a common format for data encoding and manipulation. Although the Arden Syntax addressed this problem by isolating references to local data in curly braces [“{}”] in MLMs, it still does not provide the mechanisms for accessing data in a truly format-independent way.

2.1 Underlying Data Model
The “virtual medical record” (vMR), an object-oriented approach compatible with the HL7 RIM, provides a standard data model as an intermediary to heterogeneous medical record systems. The vMR has been proposed as an underlying model for handling patient data in the context of decision-support systems. The vMR is a refinement of the Reference Information Model (RIM).

Although this approach represents a paradigm shift in data representation, moving from time-stamped atomic data types to an object-oriented data model, it provides a first approach towards a standard for exchange, management and integration of clinical data. However, the OO approach of the vMR is incompatible with the Arden Syntax, since the latter can only handle atomic data types.

2.2 Queries, Expressions and Clinical Guidelines
The need for a language to formulate queries and expressions to extract and manipulate clinical data is clear. Ideally such a language should be:

· Vendor-independent

· Platform-independent1
· Object-oriented and compatible with the vMR
· Easy to read/write1
· Side-effect free1
· Flexible

· Extensible

The following section describes how GELLO complies with the above requirements and provides the mechanisms for handling OO clinical data stored in a standardized data model such as the vMR.
3 GELLO: Goals and Properties

We propose GELLO as a platform-independent standard query and expression languages for sharing and manipulating knowledge in a medical context. Specifically:

· GELLO is targeted to clinicians who need to use query and expression languages for health care applications.

· GELLO is vendor-independent.

· GELLO is platform-independent.

· GELLO provides the mechanisms to access data through an OO data model, with strongly-typed expressions, in general purpose query and expression languages.
· GELLO is a declarative language. Its queries and expressions have no side effects.

· GELLO is extensible by adding new user-defined classes to the underlying OO data model.
· All data manipulation methods must be explicitly defined in the OO data model. The purpose of GELLO is to provide a robust syntax for queries and expressions so data can be easily handled.

· By using a specified OO data model, such as the vMR, each guideline need not provide a separate mechanism for translation of data elements to/from host environments (e.g., the “curly braces” needed in the Arden Syntax data section).
· The object-oriented approach allows modularity, encapsulation and extensibility.
Thus use of GELLO:

a. Provides platform-independent support for mapping to the OO data model used (e.g., the vMR). Therefore it eliminates the need for curly braces or other implementation-specific encoding methods for information retrieval as part of knowledge content (guidelines, alerts, etc.).

b. Simplifies the creation and updating of clinical data objects, and their evaluation.

c. Facilitates sharing of decision logic and other computer expressions.

The GELLO specification described here and in the referenced documents is the result of discussions in the HL7 Clinical Decision Support Technical Committee (CDSTC) during the past year. Six presentations to the TC during that period are available at [TC1, TC2, TC3, TC4, TC5, TC6]. An earlier BNF specification of the language is available at [DSG02-01].

[image: image2]
Figure 1: GELLO and its relation to Arden Syntax, GLIF, RIM and other DSs and KBs. GELLO query and expression languages can be embedded into various tools to provide the mechanisms for access and manipulation of OO data.
4 OCL
OCL is the expression language used for specifying invariant constraints and pre- and –post-conditions in object models in the Unified Modeling Language (UML). OCL is a strongly-typed, pure expression language without any side effects. Although the evaluation of an OCL expression returns a value, the state of the underlying data model cannot change because of the evaluation of such an expression. OCL is the result of a consensus effort towards a standard in object-oriented modeling and design. Since OCL is not a programming language, it does not rely on a specific platform. All implementation issues are out of the scope of the language. The OCL expression language satisfies the following requirements, making it suitable for developing a query and expression languages such as GELLO:
· Vendor-independent1
· Platform-independent1
· Object-oriented and compatible with the vMR

· Concise

· Easy to read/write1
· Declarative

· Side-effect free1
· Flexible

· Extensible

The latest version of OCL documentation can be found here.
4.1 OCL Language Description

This section briefly describes the elements of the OCL language. A complete description of the OCL language description can be found here.
4.1.1 Relation to the UML Metamodel

OCL has been developed to add precision to the diagrammatic elements of UML. OCL allows modelers to express all the relevant aspects of a specification that just UML diagrams cannot represent.
4.1.1.1 Self
The reserved word Self is used to refer to a contextual instance of a specific type. It assumes there is a previously specified context.

4.1.1.2 Specifying the UML context

The context of an OCL expression can be specified through a context declaration at the beginning of an OCL expression.

4.1.1.3 Invariants
An invariant is a constraint associated to a classifier (a class in the data model). An invariant must be true for all the instances of the class the invariant refers to. Invariants are defined in the context of the classifier to which they apply.
4.1.1.4 Pre- and Postconditions
Pre- and postconditions are OCL constraints associated with an operation or method. As with invariants, pre- and postconditions are defined in the context of the classifier to which they refer to. Pre- and postconditions evaluate an object in the predefined context.
4.1.1.5 Package Context
An UML data model can be divided into packages containing classes that need to be grouped together.
4.1.2 Basic Values and types
OCL basic data types are predefined and independent of any data model. OCL basic data types are: boolean, integer, real and string.

4.1.2.1 Types from the UML Model

All classifiers (classes) in the UML are data types in OCL.
4.1.2.2 Enumeration Types
An enumeration is a datatype that defines a number of possible values such an enumeration can have.
4.1.2.3 Let Expressions and «definition» Constraints
In OCL, the let expression allows the definition of an attribute or operation that can be used in a constraint. Let expressions are only known within the specification of the constraint. However, if a let variable or operation is defined within a «definition» constraint attached to a classifier (a class in the data model), it will be known in the same context where a property of the classifier can be used.
4.1.2.4 Type Conformance
OCL is a typed language. All types in an OCL expression must conform to either a basic type or a classifier in the UML model.

4.1.2.5 Casting

OCL objects with a type type1 can be re-typed into type2 if type2 is a subtype of type1.
4.1.2.6 Precedence Rules

OCL has a predefined precedence order for operators (see page 2-8 in OCL).
4.1.2.7 Infix Operators

The use of infix operators is allowed in OCL.
4.1.2.8 Keywords

Keywords in OCL are treated as reserved words. Reserved words cannot occur anywhere in an OCL expression.
4.1.2.9 Undefined Values

Rules for handling undefined values have not been defined yet in OCL 2.0
4.1.3 Objects and Properties

OCL expressions can refer to classifiers and datatypes. Also, all attributes, association-ends, methods and side-effect free operations attached to such classifiers can be used. A property of an object under OCL can be:

· an attribute

· an association end

· a side-effect free operation

· a side-effect free method

4.1.3.1 Reference to Object Properties

The notation to access a property of an object is the name of the object followed by a dot and the name of the property: object.property
· Attributes. The value and type of an expression that refers to an attribute of an object are the type and value of the attribute such an expression refers to.
· Operations and Methods. Operations and methods are operations associated to a class. Such operations may have parameters that must be included in the operation or method call. For example, aPerson.income(aDate) aDate is passed as parameter to the method income associated to the object aPerson. The type of the result is the return type of the operation.
· Association-ends and Navigation. Starting from a specific object, it is possible to refer to other associated objects and their properties using association-ends.

4.1.3.2 Combining Properties

Properties can be combined into complex expressions. All OCL expressions evaluate to a specific type, so after obtaining a result, such result can be used in another property. OCL evaluates expressions from left to right.
4.1.3.3 Pathnames for Packages
OCL provides the notation for referring to types organized in packages by using a package-pathname prefix.
4.1.3.4 Predefined Properties on all Objects

OCL defines several properties that apply to all objects:

· oclIsTypeOf (t: oclType): Boolean

· oclIsKindOf(t: oclType): Boolean

· oclInState(s: oclState): Boolean

· oclIsNew(): Boolean

· oclAsType(t: oclType): Boolean

4.1.3.5 Features on Classes Themselves

In OCL is possible to use features defined on the classes and datatypes themselves defined in the class model.

4.1.4 Collections and Collection Operators

4.1.4.1 Collections

Collection is a predefined type in OCL with a large number of operations to manipulate them. Operations applied on collections never change the original collection; the result of an operation is another collection. Collection is an abstract type with three concrete subtypes: Set, Sequence and Bag. Collections of collections are flattened automatically.

· A Set is a mathematical set with no duplicates elements.

· A Bag is like a Set with duplicates.

· A Sequence is like a Bag but the elements are ordered.

4.1.4.2 Collection Operators

OCL provides operations to project new collections over existing ones.
· Select and reject are constructs to specify a selection from a specific collection. Select returns all the elements in a collection that satisfy a criterion (all elements that evaluate to True) whereas reject returns all the elements that do not satisfy such conditions (all elements that evaluate to False).
· Collect is a construct used to specify a collection derived from other collection, with elements that are different from the original collection.
· ForAll is used to specify a Boolean expression that must hold true for all the elements of the resulting collection.
· Exists is used to specify a Boolean expression with must be true for at least one element in a collection.
· Iterate is a generic operation that checks each element in a collection to see whether such element satisfies an expression.
· Resolving Properties. References to properties of objects must be defined using a full notation including the object itself. If self is used, then the reference to such an object is implicit.
5 OCL Features Not Included in GELLO
As mentioned before, GELLO is a subset of OCL. The following OCL features are not included in GELLO:

· Self and implicit references to objects

· Context declaration
· Invariants
· Pre- and postconditions
· Package context
· Enumeration types
· «definition» constraints (although let is included)
· Undefined values
· Pathnames for packages
· Collection types

· Collection operators

· Associations and aggregations
6 GELLO

GELLO was conceived as a pure, declarative, strongly-typed language, containing query and expression sublanguage components. GELLO is free of side effects; it provides the mechanisms to access medical data through an OO data model. Several features of OCL have been incorporated into GELLO to make it a robust and flexible platform independent language.

GELLO is a subset of OCL; hence all GELLO features are OCL features. We emphasize this in order to preserve consistency and extensibility. However, not all OCL features are part of GELLO. In this section, the use of HL7 classes as a data model is discussed. All basic data types are provided by GELLO (§6.1), while model types –or classes- are defined in the underlying HL7 data model (§6.1.2) (the abstract specification for OCL data types can be found here). Variables are created as instances of classes defined in the HL7 data model. Variables (§6.4) are strong typed, temporal storage locations with a predefined, limited scope (§6.4.3). In order to preserve GELLO as a side-effect free language, the creation of variables as instances of HL7 classes is delegated to the HL7 data model, hence classes in the data model should provide the appropriate mechanisms for creating instances.
6.1 GELLO Types
GELLO is a strong-typed language. This means that every expression must have a known type. There are two type categories: Basic types and model types.

Each and every GELLO query and expression has a type that must conform to either the basic or model types.

6.1.1 Basic Types

OCL basic or primitive data types are included in the GELLO grammar. These types are compatible with HL7 data types. A primitive data type is named by its reserved word. They are: boolean, integer, real, string.
Basic datatypes in GELLO and RIM

Basic types exist in GELLO and RIM. Each provides their own methods. We cannot extend the types in GELLO since we seek to preserve consistency with OCL. We can remove but not add features. Thus the question arises regarding how we preserve compatibility. Do we really need all four data types? Integer is not needed because GELLO does not handle arrays, and any return value from a query with type integer can be mapped to the data model. The same holds for reals.
If we remove integer and real data types from GELLO and keep boolean (needed for logical expressions) and string (needed for identifiers) we eliminate inconsistencies, incompatibilities and duplicates in method calls. Integer and real then will be classes in the HL7 data model, and it is the HL7 data model which must provide all the supporting operators.
Possible inconsistencies in the semantics of GELLO and HL7 infix operators must be checked.
6.1.2 Model Types

Model types refer to user-defined classes in the underlying data model (e.g. vMR).

6.1.3 Collection Types
Collection types are not part of the GELLO grammar, since they are fully supported by the HL7 RIM data model. We expect the HL7 RIM data model to support the following collection types: Set, Bag and Sequence. See (§6.8) for collection operators.

Collection types

Following Gunther Schadow’s suggestion we removed collection types from GELLO and use the collection types provided by the HL7 RIM data model. As was the case with basic types, this eliminates having data types defined in multiple places, duplication, and inconsistency in methods, etc.

Removing collection types from GELLO and using HL7 collection types requires the addition of OCL collection operators like select, reject, forAll, etc (see §4.1.4.2 and §6.8). This approach eliminates inconsistencies in notation, e.g. ‘arrow’ vs. ‘dot’ notation. The ‘arrow’ notation is used in OCL to handle collection operators, whereas the ‘dot’ is the notation to access operators attached to a class in an OO data model as the HL7 RIM. Apparently, this resolves the problem by unifying the notation. However, significant inconsistencies arose. See (§6.8) for discussion.

6.1.4 Tuple Type

The tuple type is not part of the GELLO grammar. However, it should be included and fully supported by the HL7 RIM data model. A tuple combines elements with different types into an aggregate type. Each tuple part has a name and a type. A tuple part can be a single element or a collection. The type of a tuple part can be of a basic or a model type.

Tuple type

Having tuples as a data type is useful for queries returning multiple elements with different types. We suggest that the HL7 RIM data model should include this data type and the required methods for manipulating information.
The tuple type may be useful when handling multiple-typed information from joins and Cartesian products. We need to further discuss the structure of the tuple and the required methods.
6.2 Names

Names refer to declared entities in an expression. A declared entity is a local variable, a class type, a basic type, or a parameter in a method call. Names can consist of a single identifier, or a sequence of identifiers separated by “.”.
Names may be used in expressions and queries. If the name of an attribute or a method appears in an expression, it requires full invocation –the class it belongs to must be explicitly referred to.
6.3 Properties

A property of a class can be an attribute (§6.3.1) or a method (§6.3.2). The syntax for referring to a property of a class is: Class.property which is consistent with the ‘dot’ notation of an OO data model.
6.3.1 Attributes

Attributes are properties of an object defined in a class of the data model. For example, a class Person can have an attribute age. Hence, the age of a person is written as Person.age. The returning value of such an expression is an integer. Such returning type matches the integer type mentioned in (§6.1.1).

6.3.2 Methods

A method declares executable code that can be invoked by passing a fixed number of values as arguments. The name of a method may appear in a GELLO expression only as a part of a full method invocation expression. That is, along with the name of the method and its arguments, the class or object it belongs to must be explicitly referred to.

The HL7 data model provides classes and associated methods. These methods provide the functionality for handling the clinical data stored in the data model.

6.3.2.1 Method Parameters

Parameters are name argument values passed to a method in a method call. They must be included in a method invocation separated by commas. The type of each value must match the type of the expected argument in each position of the argument list.

6.4 Variable Declaration
A variable is a storage location. The type of a variable could be a basic type (§6.1.1) or a model type (§6.1.2). In either case, a variable can only hold a value of the same type.
A declaration defines the name for a variable inside a program. Each variable declaration must have a scope (§6.4.3).

6.4.1 Mechanisms for Declarations: Creating a Variable
Sometimes, it is necessary to store the returned value from a query. Since GELLO has been defined as a side-effect free language, the underlying data model must provide the necessary methods for creating new instances of the classes in the data model. The proposed syntax for such operation is: Class.new(parameters), where Class is a class in the data model, new is the associated method for creating a new instance of a class Class, and parameters are the values for the class attributes.
6.4.2 Assigning Values to Temporary Variables: the let Operator

In OCL, the let expression allows the definition of an attribute or operation that can be used in a constraint. GELLO does not include constraints. Instead, the let operator assigns a value to a variable. The type of the variable can be either one of the basic built-in GELLO data types, or a class from the underlying data model. If the type of the returning value is a class in the data model, an instance of such a class must be created. See (§6.4.1) for how to create an instance of a class. The type of the returning value of an expression must match the type of the variable to which such a value is to be assigned. The syntax for let expressions is as follows:
let variable : type = value
Where variable is a variable with type type, and value is the returning value of a GELLO expression. For example:
let threshold_for_osteodystrophy : integer = 70

…(1)
let potassium : PhysicalQuantity = PhysicalQuantity.new(70,”dl”)
…(2)

In (1) threshold_for_osteodystrophy is a GELLO built-in basic type (we are assuming we have not moved integer and real into the data model) and hence we create the variable and assign the value of 70 in the same operation.
If threshold_for_osteodystrophy were a class type Integer, then the method new should be added to the class, and (1) should be rewritten as:
let threshold_for_osteodystrophy :Integer = Integer.new(70)

…(1a)

In (2), potassium has a type PhysicalQuantity which is a class in the data model, and we need to create an instance of that class before assigning it to the variable.
Values assigned to variables cannot be changed. Once the value is assigned it remains the same for the scope of the variable.
6.4.3 Scope of Declarations

The scope of a declaration is the portion of a program where the declared entity is valid and can be referred to. The scoping rules must be defined separately by each standard. For example, Arden Syntax can define the scope of the variable declared in the data slot to be the entire MLM, while a variable declared in the logic slot, only has scope within that slot.
6.5 Reflection

Within the OCL, there are properties that apply to all objects in underlying the data model (§4.1.3.4). Reflection properties can be used to determine:

· The direct type of an object/variable

· The supertype of an object

The following operations from OCL have been incorporated into GELLO:

· object.oclTypeOf(t: OclType): Boolean

The evaluation of oclTypeOf returns true if the direct type of the object and t are the same: aPerson.oclTypeOf(t: Person) returns true if Person is the direct type of aPerson.
· object.oclKindOf(t: OclType): Boolean

Similarly, the evaluation of oclKindOf returns true if the t is either the direct type or one of the supertypes of an object: aPatient.oclKindOf(t: Person) returns true if Person is either a direct type or a supertype of aPatient.

6.6 Casting

Every expression and query written in GELLO must have a type that is matched to a basic type or a model type. It is possible however, to change the type of an expression into another type depending on the context such an expression occurs. A specific conversion from type A to type B allows and expression of type A to be treated as type B. This is called casting and OCL provides an operation that has been incorporated into GELLO: oclAsType.
6.7 Built-in Operators
This section lists the infix operations allowed in a GELLO expression. Operator precedence is as defined in the OCL specification (see page 2.8 OCL).
Arithmetic operators

If integer and real are moved from built-in basic types into the data model, precedence and semantics of the operators must be revised.

6.7.1 Arithmetic Operators “+”, “-” and “*”
This section presents the evaluation function for “+” and the allowed types. The types for “-”, and “*” are the same as those for “+”, and so is the evaluation function (see page 5.11 OCL). The evaluation function for “+” is defined as follows:

F+(V1,V2)= V1 +V2

if V1 and V2 are both integers or reals

 = unknown

otherwise
Types for “+”:
· (integer(integer) → integer
· (integer(real) → real

· (real(integer) → real

· (real(real) → real

6.7.2 Arithmetic Operator “/”

The result of a division is always a real number even if the arguments are integers.

F/ (V1,V2)= V1 /V2

If V1 and V2 are either integers or reals

 = unknown

otherwise

Types for “/”:

· (integer(integer) → real

· (integer(real) → real

· (real(integer) → real

· (real(real) → real

6.7.3 Comparison Operators “=”, “>”, “<”, “>=”, “<=”, “<>”
The allowed types and evaluation rule for the operators “=”, “>”, “<”, “>=”, “<=”, “<>” are as follows. All these operators return false if one or both of the comparands has the value unknown.
Types for “=”, “>”, “<”, “>=”, “<=”, “<>”:
· (real(real)(truth_value

Definition of the evaluation function F> (V1, V2). The evaluation function is the same for the other operators:
F>(V1,V2)= true If V1 and V2 are both reals and V1 > V2 then

 = false otherwise
6.7.4 Boolean Operators

The valid types and evaluation functions for Boolean operators “and”, “or”, “xor” and “not” are given as follows:
Types for “and”, “or”, “xor”:

· (truth_value(truth_value) → truth_value

Types for “not”:

· (truth_value) → truth_value

Definition of the evaluation functions (as in OCL p5.12):

	V1
	V2
	V1 and V2
	V1 or V2
	V1 xor V2
	not V1

	false
	false
	false
	false
	false
	true

	false
	true
	false
	true
	true
	true

	true
	false
	false
	true
	true
	false

	true
	true
	true
	true
	false
	false

	false
	unknown
	false
	unknown
	unknown
	true

	true
	unknown
	unknown
	true
	unknown
	false

	unknown
	false
	false
	unknown
	unknown
	unknown

	unknown
	true
	unknown
	true
	unknown
	unknown

	unknown
	unknown
	unknown
	unknown
	unknown
	unknown

Truth values

GELLO is intended to support extended values: true, false and unknown. We need to check for consistency with HL7 RIM. HL7 Boolean values in the HL7 RIM data model are true, false and NULL.

Boolean operators

There may be a discrepancy in the Boolean operators. GELLO supports and, or, xor, not. Whereas HL7 RIM supports and, not, xor, or and implies. Of course implies operator can be derived with not and and, but a check is needed.
6.8 Collection Operators

Originally we included collection types as part of the built-in data types in GELLO. We discussed this issue with Gunther Schadow and he suggested moving out collection types. This, at first glance seemed a reasonable solution since collection types are already supported by the HL7 RIM data model. Even more, moving collection types (§6.1.3) and collection operators from GELLO grammar into the data model removed inconsistencies in the notation: GELLO collection operators –like select, reject, forAll, etc- use an ‘arrow’ notation as defined in OCL. Whereas HL7 RIM collection operators are referred to with a ‘dot’ notation consistent with an OO data model.

Also, methods like last(), first(), etc could be added to the HL7 RIM collection classes to extend functionality. With the resulting notation, the above expression is rewritten as follows:
Observation.select(coded_concept=’03245’).last()

However, moving collection types into the data model and unifying the notation creates a problem, explained as follows: Observation is not a collection, whereas select is a method for handling collections. Hence Observation.select is not a valid expression. Similarly, last() is a method associated to collections, and again the expression above invokes such a method as if it were a method associated to the Observation class, which is not.

Collection operators

To tackle this problem, we propose the addition of a generic collection class to the HL7 data model from which all classes in the data model should inherit the necessary methods (e.g. select(), size(), isEmpty(), last(), etc). If we add this class we avoid moving back collection types and operators into GELLO and reintroducing the ‘arrow’ notation.

Collection types in HL7 should handle a singleton as a collection with one element (as in OCL). This will allow us to check the result of a query by asking whether a collection –with one or more elements- is empty or not without worrying about the actual number of elements returned. See §4.1.4.2 for a description of OCL collection operators.
6.9 Tuple Operators
The Tuple type in the data model must provide all the operators to manipulate tuples and their elements.

Tuple operators

Joins and Cartesian product could be included as tuple operators among others. This needs to be defined.
6.10 If Expression

An IfExpression evaluates a condition and depending on the resulting truth value, the result is one of two possible expressions. Both expressions are mandatory. The IfExpression is not intended for control flow, but as a conditional for the returning value of an expression. The syntax of an IfExpression is as follows:
if condition then
 expression1

else

 expression2

endif
Where condition is a GELLO expression which represents a Boolean condition. If the result of condition is true, then the value of the IfExpression is expression1. If the condition evaluates to false, the result of the IfExpression is expression2.

7 GELLO Syntax

This section describes the grammar used in this specification to define the lexical and syntactic structure of GELLO queries and expressions.

7.1 GELLO Lexical Grammar

GELLO BNF syntax is defined in terms of the following lexical tokens. GELLO grammar is based on the grammar for OCL expressions:

· A reserved word is any string that appears in double quotes in the BNF.
· An atom consists of any sequence of alphanumeric characters which begins with a letter can contain one or more underscores.
· A number could be either an integer or a real.

· An integer is represented by one or more digits

· A real is represented by a sequence of one or more digits followed by “.” followed by zero or more digits, optionally followed by “e” or “E” a sign “+” or “-” one or more digits and “d” or “D”.

· A double quoted string is a pair of double quote characters enclosing a sequence of zero or more characters other than comments, tabs, newlines and carriage returns.
· A comment is the string – followed by any sequence of characters other than newlines, or carriage returns.
7.2 GELLO BNF Syntax (under revision)

The Backus-Naur Form (BNF) syntax of GELLO assumes that text defining a GELLO query or expression has been converted into lexical tokens by the lexical analyzer defined in the previous section.
The following notational conventions are used throughout GELLO BNF syntax:

· The root symbol of the syntax is <gelloExpressionOrQuery>

· Non-terminal symbols are denoted with roman text strings enclosed in angle brackets, e.g. <expression>

· Tokens are represented with italic text strings enclosed in angle brackets, e.g. <atom>.

· Reserved words are represented by text strings enclosed in double quotes.

The full BNF syntax for GELLO will be defined once the issues highlighted in this document are resolved.
8 GELLO Queries

A GELLO query is any text string conforming to the definition of a query in the GELLO language specification. GELLO queries can be used to retrieve information from a data model such as the vMR.

When a query is executed, it returns a value. The type of the returning value is one of those defined in the underlying data model. E.g. it could be an object of class Class, where Class is a class in the data model. It could be one of the basic types, or a tuple type (§6.1.4).

As with expressions, executing a query does not produce any side effects. However, the returning value can be assigned to a variable using the let operator. See (§6.4.2).
8.1 Return Type of a Query

All GELLO queries return a value, and such value must have a type. The type of a returning value must match any of the basic data types or classes defined in the underlying data model. The return type of a query can be one of the following:
· Single: basic type or model type

· Collection: set, bag or list of single or tuples.
· Tuple: an aggregation of different types

If such a value is assigned to a variable, both the value and the variable must have the same type.
8.2 Evaluation of Queries
As in OCL, GELLO queries always evaluate to a specific object of a specific type. Complex queries can be constructed by using the result of a query as a parameter of another query, both in the same expression. Queries are evaluated from left to right. In the case of infix operators, the evaluation order is determined by the precedence of the operators.
8.3 Example of a Query (under revision)
Queries interrogate a data repository (e.g. vMR) to retrieve data that match certain conditions specified in the query criteria. For purposes of the query language, the medical data repository is a set of objects representing medical data. Objects may have associations with each other (e.g., a lab test result may be associated with the order for the test).

Observation.select(coded_concept=“C0428279”).last()
The query above returns the last observation with a coded concept equal to “C0428279”. As mentioned in (§6.4.2) the return value of a query can be assigned to a variable. For example, such value could be assigned to the creatinine variable using the let operator. Creatinine is a variable of type Observation created elsewhere in the application:

let creatinine: Observation = Observation.select(coded_concept=”C0428279”).last()
Syntax of queries

The syntax of queries is under revision given the inconsistencies described earlier in this document.

8.4 Declarativeness of Queries

As seen in the previous section, a series of methods can be invoked in a query. The current syntax implies an order of execution. This order can be eliminated by adding extra methods to remove the sequencing of execution.

For example, Observation.select(coded_concept=“C0428279”).last() implies that all observations with coded_concept=“C0428279” are first selected and then the last element is retrieved. We propose the addition of methods like selectLast() so the above query would be:

Observation.selectLast(coded_concept=“C0428279”)

This query does not imply any order in the execution of the select and last methods. Similar methods need to be defined for sorting and retrieving information.

9 GELLO Expressions

A GELLO expression is any text string conforming to the definition of an expression in the GELLO language specification. GELLO expressions can be used to:

· Build decision criteria

· Abstract or derive summary values

When an expression is evaluated, the result of such evaluation is a value. The type of the result is the type of the expression.
Evaluation of an expression does not produce any side effects, although the returning value can be used by the guideline to make decisions, control execution flow, etc. If an expression can be embedded in a conditional statement, the returning value is interpreted by the application to which the conditional statement belongs.
9.1 Type of an Expression

If an expression denotes a variable or a value, then such expression has a type that must be checked for compatibility. Such variable or value must match any of the basic data types or classes defined in the underlying data model.
If such a value is assigned to a variable, the compatibility between the type of the returning value and the type of variable to which such value is assigned must be checked.

9.2 Normal and Abrupt Completion of Evaluation
Expressions are evaluated by following a series of steps. Normal completion signifies that all steps can be carried out without an exception being thrown. If, however, evaluation of an expression throws an exception, the expression is said to complete abruptly.
9.2.1 Handling Exceptions
Mechanisms for handling exceptions need to be defined.
9.3 Evaluation of Expressions

Expressions are evaluated from left to right. In the case of infix operators, the evaluation order is determined by the precedence of the operators.

9.3.1 Argument Lists

Argument lists included in method invocations are evaluated left-to-right.
9.4 Example of Expressions (under revision)
When the following expressions are evaluated, they return a value of type Boolean. Expressions like these can be used to build decision criteria:

calcium.notEmpty() and phosphate.notEmpty()
renal_failure and calcium_phosphate_product > threshold_for_osteodystrophy
Syntax of expressions
The syntax of expressions is under revision given the inconsistencies described earlier in this document.

10 Summary of Pending Issues

10.1.1 Basic data types

We propose to remove integer and real data types from GELLO and keep boolean (needed for logical expressions) and string (needed for identifiers). In this way, we eliminate inconsistencies, incompatibilities and duplicates in method calls. Integer and real then will be classes in the HL7 data model, and it is the HL7 data model which must provide all the supporting operators.

Possible inconsistencies in the semantics of GELLO and HL7 infix operators must be checked.
10.1.2 Collection types and operators

Collection types are to be supported by HL7 RIM data model. OCL-like collection operators must be added to collection classes in the HL7 RIM data model.

We propose a generic collection class as part of the HL7 RIM data model. All classes in the data model can inherit the associated methods. With this addition we can use the collection classes in the HL7 RIM data model while eliminating the ‘arrow’ notation and the inconsistencies mentioned in §6.8.
10.1.3 Tuples and Joins
The tuple type should be included and fully supported by the HL7 RIM data model. The tuple type may be useful when handling multiple-typed information from joins and Cartesian products.

10.1.4 Joins

Before defining the mechanisms for joins and Cartesian products we need to resolve other issues, e.g. basic data types, collection operators and tuple type. We need the tuple type as an aggregate type to store the result of a join operation. We also need a collection operator to perform the join operation. We propose that such operator should be a method in the generic collection class we proposed as an addition to the HL7 RIM data model.
10.1.5 Declarativeness of Queries

A series of methods to retrieve and sort information that do not imply an order in execution need to be added to HL7 RIM collection class (e.g. selectLast(), selectFirst(), etc.)
10.1.6 GELLO BNF

GELLO BNF syntax needs to be completed once the issues addressed in this document are discussed.

References

· HL7 RIM

http://www.hl7.org/Library/data-model/RIM/modelpage_mem.htm
· A virtual medical record for guideline-based decision support. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11825198&dopt=Abstract
· The Virtual Medical Record (vMR)
http://www-smi.stanford.edu/pubs/SMI_Reports/SMI-2001-0876.pdf
· Minute from HL7 Clinical Decision Support Technical Committee and Clinical Guideline SIG Working Group meeting in San Diego, CA, January 9 -11, 2002.
http://smi-web.stanford.edu/people/tu/HL7/HL7SanDiegoJan2002.txt
· [DSG02-01]. Omolola Ogunyemi, Qing Zeng, Aziz Boxwala. BNF and built-in classes for object-oriented guideline expression language (GELLO).
http://dsg.bwh.harvard.edu/gello/GELLClassesBNF.rtf
· [TC1]. http://dsg.bwh.harvard.edu/gello/Arden_GLIF_May_2001_AB.ppt
· [TC2]. http://dsg.bwh.harvard.edu/gello/gello.ppt
· [TC3]. http://www.hl7.org/library/committees/dss/minutes/expr-lang-boxwala-10-2001.ppt
Also: http://dsg.bwh.harvard.edu/gello/slc.ppt
· [TC4]. http://www.hl7.org/library/committees/dss/minutes/gelloupdate2-W2002.ppt
Also: http://dsg.bwh.harvard.edu/gello/gelloupdate.ppt
· [TC5]. http://dsg.bwh.harvard.edu/gello/GELLO_may02.ppt
· [TC6]. GELLO update HL7 meeting. September 2002
· OCL http://www-3.ibm.com/software/ad/library/standards/ocl.html
· Response to the UML 2.0 OCL RfP (ad/2000-09-03). http://www.dcs.kcl.ac.uk/staff/tony/docs/OCL2InitialSubmission.pdf
· The abstract specification for OCL data types
http://www.hl7.org/v3ballot/html/foundationdocuments/helpfiles/datatypes.htm
GELLO

Q&E

GELLO

Q&E

GELLO

Q&E

vMR

GELLO

Q&E

Object-oriented data model

Other

DS & KBs

RIM

Expressions

(Ontology)

GLIF

(Sequential Knowledge)

Arden

Syntax

(Guidelines)

� As discussed in HL7 Clinical Decision Support Technical Committee and Clinical Guideline SIG Working Group meeting in San Diego, CA, January 9-11, 2002.

1 As discussed in HL7 Clinical Decision Support Technical Committee and Clinical Guideline SIG Working Group meeting in San Diego, CA, January 9 -11, 2002.

[image: image1.png]