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ABSTRACT 
Many educational data mining studies have explored methods for 
discovering cognitive models and have emphasized improving 
prediction accuracy. Too few studies have “closed the loop” by 
applying discovered models toward improving instruction and 
testing whether proposed improvements achieve higher student 
outcomes. We claim that such application is more effective 
when interpretable, explanatory models are produced. One 
class of such models involves a matrix mapping hypothesized 
(and typically human labeled) latent knowledge components 
(KCs) to the instructional practice tasks that require them. An 
under-investigated assumption in these models is that both task 
difficulty and learning transfer are modeled and predicted by 
the same latent KCs. We provide evidence for this assumption. 
More specifically, we investigate the data-driven hypothesis 
that competence with Algebra story problems may be better 
enhanced not through story problem practice but through, 
apparently task irrelevant, practice with symbolic expressions.  
We present new data and analytics that extend a prior close-
the-loop study to 711 middle school math students. The results 
provide evidence that quantitative cognitive task analysis can 
use data from task difficulty differences to aid discovery of 
cognitive models that include non-obvious or hidden skills. In 
turn, student learning and transfer can be improved by closing 
the loop through instructional design of novel tasks to practice 
those hidden skills.   
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1. INTRODUCTION 
As the field of Educational Data Mining (EDM) strives for 
technical innovation, there is risk of losing the "E" in "EDM", 
that is, of not making a clear link to the "Educational" in 
"Educational Data Mining". Connected with this concern is 

the temptation to evaluate EDM research only in terms of 
predictive accuracy and not place value on interpreting the 
resulting models for plausibility and generalizable insights. 
While it is possible to use uninterpretable or "black box" 
predictive models in educational applications (e.g., [1]), 
interpreting model results is an important step toward 
improving educational theory  and  practice  for  three  
reasons: 1)  for advancing scientific understanding of learning or 
educational domain content, 2) for generalization of models to 
new data sets (cf., [19]), and 3) for gaining insights that lead to 
improved educational technology design. 

Whether an educational application of EDM is through a black 
box model or mediated by data interpretation, the most 
important, rigorous, and firmly grounded evaluation of an 
EDM result is whether an educational system based on it 
produces better student learning. Such an evaluation has been 
referred to as "closing the loop" (e.g., [16]) as it completes 
a "4d cycle" of system design, deployment, data analysis, and 
discovery leading back to design. The loop is closed through 
an experimental comparison of a system redesign with the 
original system design. 

Use of the "close the loop" phrase, in our writing, goes back 
at least to [12]. Early examples of data-driven tutor designs, 
that is, of a close-the-loop experiment, can be found in [13] 
which tested a tutor redesign based on discoveries from data 
originally published in [17] and in [4], which was based 
on data analysis [5]. It is notable that a systematic process 
for going from data to system redesign was not articulated 
in this early work, but has been increasingly elaborated in 
more recent writings [especially 16]. 

This paper further specifies a particular class of analytic 
methods, namely quantitative cognitive task analysis methods, 
and how to use them to close the loop. The output of a 
cognitive task analysis (CTA) is a model of the underlying 
cognitive processing components (so-called knowledge 
components or KCs) that need to be learned to perform well 
in a task domain. Quantitative CTA uses data on task 
difficulty and task-to-task learning transfer to make 
inferences about underlying components. 

1.1 Cognitive Task Analysis 
In general, Cognitive Task Analysis (CTA) uses various 
empirical methods (e.g., interviews, think alouds, 
observations) to uncover and make explicit cognitive 
processes experts use and novices need to acquire to 
complete complex  tasks [3]. Various representations of the 
resulting cognitive model (e.g., goal trees, task hierarchies, if- 
then procedure descriptions) are used to design or redesign 
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instruction. Close-the-loop experiments in different domains 
demonstrate that students learn more from instruction based 
on CTA than from previously existing instruction (e.g., 
medicine [23]; biology [ 8]; aviation [ 20]). These results 
come from CTAs using qualitative research methods that are 
costly and substantially subjective. 

Quantitative CTA methods provide greater reliability and 
are less costly (though ideally used as a complement to 
qualitative CTA). An early close-the-loop s t u d y  [13] based 
from a Difficulty Factors Assessment (DFA) showed that 
algebra students are better at solving beginning algebra story 
problems than matched equations. In a controlled random 
assignment experiment, the newly designed instructional 
strategy was shown to enhance student learning beyond the 
original tutor. Besides DFA, automated techniques can further 
reduce human effort and can be used on large data sets. An 
early example used learning curve analysis to identify hidden 
planning skills in geometry area [16] that resulted in tutor 
redesign. In a close-the-loop experiment comparing the 
original tutor to the redesigned tutor, students reached 
mastery in 25% less time and performed better on complex 
planning problems on the post-test. Further research [15] has 
shown how a search algorithm (e.g., Learning Factors 
Analysis) can generate better alternative cognitive models. 

A key assumption behind DFA is that significant differences in 
task difficulty can be used to make non-obvious 
(sometimes counter-intuitive) inferences about underlying 
cognitive components and, in turn, these components help 
predict learning transfer and guide better instructional 
design. Similarly, statistical models of learning, including 
both logistic regression and Bayesian Knowledge Tracing 
variations, also tend to assume that both task difficulty and 
learning transfer can be predicted using the same KC matrix. 

Recent work explored this connection [18] and found, across 8 
datasets, that statistical models that use the same KC matrix to 
predict task difficulty and learning transfer produce better 
results than models that use separate matrices (item vs. KC). 
A key goal of this paper is to further investigate this difficulty-
transfer linkage claim by extending evaluation of it through 
close-the-loop experimentation. 

1.2 Illustrating Quantitative CTA 
Consider the problems in Table 1 and try to answer the following 
question before reading on. Assuming the goal of instruction is 
to improve students’ skill at translating story problems into 
algebraic symbols (e.g., translating the 2_step story in the first 
column of Table 1 into “62+62-f”), which will yield better 
transfer of learning: practice on 1_step story problems 
(columns 2 and 3) or practice on substitution problems 
(column 4)? Note that in the close-the-loop experiment we ran, 
similar multiple matched problem sets were created. A 
different problem set was used for practice than was used for 
transfer. For example, students who saw the 2-step problem in 
Table 1 as a transfer post-test item would not see the associated 
1_step or substitution problems from Table 1 as practice 
problems. So, again, which yields better transfer to 2_step 
problems, practice on 1_step or substitution? 

If you answered that practice on the 1_step story problems will 
better transfer to 2_step story problems, you are in good 
company as learning commonalities underlying problem 
formats (i.e., deep features) is a known factor in aiding 

analogy and transfer [9; 10]. But, the following quantitative 
analogy cognitive task analysis suggests a different answer.  

Table 1. Examples of problem variations and their solutions.  

2_step 1_step 1_step substitution 
Ms. Lindquist 
teaches 62 girls. 
Ms. Lindquist 
teaches f fewer 
boys than girls. 
Write an 
expression for how 
many students Ms. 
Lindquist teaches. 

Ms. Lindquist 
teaches 62 girls. 
Ms. Lindquist 
teaches b boys. 
Write an 
expression for 
how many students 
Ms. Lindquist 
teaches. 

Ms. Lindquist 
teaches 62 girls. 
Ms. Lindquist 
teaches f fewer 
boys than girls. 
Write an 
expression for 
how many boys 
Ms. Lindquist 
teaches. 

Substitute 
62-f for b 
in 62+b 
Write the 
resulting 
expression. 

62+62-f 62+b 62-f 62+62-f 
Using DFA, [11] explored the struggle beginning algebra 
students have with translating story problems into symbolic 
algebra expressions. A common belief is that story problems 
are hard due to comprehending the story content. However, 
two results indicate that comprehension is not a major 
roadblock. First, students are better able to solve 2_step 
problems when given a value (e.g., answering 116 when f is 
given as 8 in the 2_step story shown in Table 1) than when 
asked to write the symbolic expression (e.g., 62+62-f or 
even 62+62-8) [11]. Second, students do not do better 
when given explicit comprehension hints of the needed 
arithmetic operations than they do on 2_step symbolization 
problems without hints [11]. I f  comprehens ion  i s  no t  
the key challenge, pe rhaps  p roduc t ion  o f  the  t a rge t  
algebraic symbols is. Their results show students perform 
consistently better (62% vs. 40%) symbolizing both 1_step 
problems (e.g., producing 62+b and 62-f for the 1_step 
problems in Table 1) than on 2_step problems (e.g., producing 
62+62-f for the 2_step story problem in Table 1). 

These results suggest inferences about unobserved or “hidden 
skills” that are needed to translate 2_step stories into symbolic 
expressions such as learning how to put one algebraic expression 
inside another (e.g., as the one- operator expression 40m is inside 
the two-operator expression 800- 40m). The results are consistent 
with a need for skills that extend the implicit grammar for 
generating expressions for 1_step symbolization to recursive 
structures (e.g., “expression => expression operator quantity” and 
“expression => quantity operator expression”). Furthermore, they 
suggested that practicing non-contextual substitution problems 
(see last column of Table 1) should help students (implicitly) learn 
the desired recursive grammar structures and the corresponding 
production skills for constructing more complex expressions. 

1.3 Analysis Methods  
Our first analysis explores how much substitution practice 
transfers to story symbolization. We pursue this question 
with respect to broad outcomes and learning processes. This 
analysis replicates the high level analysis of the prior study 
(2008-09) [14] with a full dataset accumulated across four 
school years (2008-12). Our second analysis probes, more 
specifically, the question of the cognitive model link 
between task difficulty and learning transfer that underlies 
quantitative cognitive task analysis and, more generally, 
adaptive tutoring models like Bayesian Knowledge Tracing. 
Practically, the theoretical claim that learning transfer can be 
inferred from task difficulty data suggests that we can design 
instruction that produces better transfer of learning using 
models built from difficulty data (which is easier to collect). 
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Our third analysis examines whether statistical models of the 
learning process data support  conclusions drawn from the 
outcome data. Does learning curve analysis indicate 
whether and how tasks (e.g., substitution problems) designed 
to isolate practice of CTA-discovered hidden skills (e.g., 
recursive grammar) transfer to complex tasks that theoretically 
require these skills (e.g., 2_step story problems)? 

2. METHOD 
The original 2008-09 study [14] and current close-the-loop 
study were run with middle school students as part of a math 
course. In the original study, students were randomly 
assigned to either a substitution practice condition (N=149) 
or 1_step story practice condition (N=154). Since then, 
additional data with random student assignment was collected 
over three school years from 2009-12 (N=234 for 
substitution practice, N=174 for 1_step story practice) using 
the same problem set in ASSISTments. As previously 
described [14], the study involved a pre-test, instruction, and 
post-test. For the substitution condition, substitution 
problems were embedded as instruction interleaved with 
2_step story problems (posttest). For the 1_step condition,  
1_step problems were used as instruction interleaved with 
the same 2_step story problems. The pretest for a given 
version and order was the same for both conditions. Order 
was determined by difficulty of 2_step problems from a 
pilot study and  included a sequence of 2_step problems 
from easy to hard or hard to easy. 

Small changes were made to the automated scoring to give 
better feedback on unusual but arguably correct answers (e.g., 
d60 instead of 60d). For consistency in scoring, manual 
corrections made to the 0809 dataset [14] were combined 
with the corrections to the 0912 dataset and automatically 
applied to every answer in the combined dataset (0812). 

3. RESULTS AND DISCUSSION 
3.1 High Level Transfer  
In our first study [14], we reported significant main effects 
for condition and order while controlling for pretest, and no 
significant two-way or three way interaction effects when 
version was added as an independent variable. In the new 
study, we add a fifth factor for when the data was collected 
(i.e., from 0809 or from later years 0912). Most importantly, 
in a full five-factorial ANCOVA (in R with pretest as the 
covariate), we found a main effect for condition (F(1,679) = 
4.5, p < 0.05, d = .21). Main effects were also found for pre-
test (F(1,679) = 235.3, p < 0.001), order (F(1,679) = 117.8, p < 
0.001), and version (F(1,679) = 19.8, p < 0.001), but study 
year was insignificant. Significant two-way interactions were 
found for pre-test and condition (F(1,679) = 4.05, p < 0.05), 
pre-test and order (F(1,679) = 18.69, p < 0.001), and order 
and year (F(1,679) = 10.77, p < 0.01). No other higher- level 
interactions were significant (all p > 0.05). 

The pre-test by condition interaction is a consequence of the 
substitution treatment having a greater effect for students with 
higher pre-tests. Based on a median split of pre-test scores, 
students with a higher pre-test, showed greater benefits of 
substitution practice (52% posttest) over 1_step practice (44%). 
In contrast, students with a lower pre-test show less benefit of 
substitution practice (24% posttest) over 1_step practice (20%). 
This interaction is theoretically consistent with the cognitive 
task analysis in that students who cannot generate 
symbolizations for 1_step problems (e.g., 800-y and 40x) will 

not have the raw material they need to compose 2_step 
expressions (e.g., 800-40x). Figure 1 illustrates the 
interaction. Substitution practice produces transfer to story 
problem symbolization for the 82% of students (580 of 711) 
with pre-tests of at least 40%. For the 18% of students without 
1_step story skills (below 40% on the pre-test), substitution 
practice does not provide a benefit.  

 
Figure 1. The benefit of substitution practice for 

symbolizing 2_step story problems is present for the 82% 
of students with some incoming competence in 1_step story 

symbolization (at least 40% correct).  

The two other reliable interactions in the ANCOVA are not of 
theoretical significance, but we report them for completeness. 
The pre-test by order interaction is manifest in that the 
difference between high and low pre-test students is bigger on 
the easier post-test problems (63% - 31% = 32%), which 
appear in the hard-to-easy order, than on the harder post-
problems (38% - 10% = 28%), which appear in the easy-to-
hard order. The order by year interaction is a consequence of 
students in the 0912 school years showing more sensitivity to 
the order manipulation than students in the 0809 school year, 
such that they do relatively better on the easy problems (46% 
vs. 41%), but worse on the hard problems (24% vs. 30%). 

3.2 Difficulty Reliably Predicts Transfer  
In this analysis, we more precisely test the following general 
logic: If difficulty data indicates a hidden skill that makes an 
important task hard, then inventing new practice tasks to 
isolate practice of that hidden skill will transfer to better 
learning of that hard task. The specific version of the logic 
in this domain is: If the hard part of symbolizing a two 
operator story problem is in composing symbolic 
expressions, then practice on substitution problems should 
transfer to better performance on story problem 
symbolization. Our data set affords an interesting opportunity 
to more precisely test this logic because the difficulty data 
we have indicates hidden skills for some problem types, but 
not others. A precise application of the “hidden-skill-
transfer” logic stated above is that we should see the 
predicted transfer for those problem types in which the 
hidden skill is indicated by the difficulty data. For the other 
problem types, there should be no reliable transfer. 

We used the current data to reevaluate the “composition 
effect” [11]. This analysis is shown in Table 2 where task 
difficulty and transfer results are shown for each of the eight 
problems. Consider the row for the class problem (referred 
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to as “students” in the data file), which is illustrated in Table 
1. The answer for the 2_step story and substitution problems, 
namely 62+62-f, is shown in the second column. The third 
and fourth columns show the proportion correct on the 
1_step story problems, ( .75 for the “a” step with the answer 
62+b and .70 for the “b” step with the answer 62-f). The fifth 
column (labeled a*b) shows the probability of getting both 
of these steps correct, computed here as  the  product  of  the  
proportion  correct on  each  step,  .53  = 75*.70. This value is 
the baseline for the composition effect. 

The sixth column is the proportion correct on the 2_step 
story problem, 0.13. This value was computed from 
student performance on the pre-test for both conditions and 
the post-test for the 1_step practice condition. We did not 
use the post-test for the substitution practice condition to 
estimate the composition effect as the theory predicts that 
substitution practice should reduce that effect. 

A composition effect is indicated when students are less likely 
to correctly symbolize a two operator story than to correctly 
symbolize both of the matched one operator stories. The 
seventh column displays this difference (.40 = .53 - .13 for the 
class problem). The eighth column shows the estimated 
conditional probability that students can compose a single two-
operator expression (e.g., 62+62-f) given they have correctly 
formulated the two source one-operator expressions (e.g., 62+b 
and 62-f). Since p(2_step) = p(a*b) * p(2_step | a*b), we get 
p(2_step | a*b) = p(2_step)/p(a*b), thus for the class problem 
p(2_step | a*b) = .13/.53 = .25. The lower this value, the bigger 
the composition effect. 

The important feature to note about values in the 
composition effect columns is that they indicate there is no 
composition effect for the cds and mcdonalds problems (see 
the last two rows). Both are relatively well-practiced forms, 
the 5h-7 for mcdonalds is a high frequency linear form (i.e.,   

Table 2. Composition effects are found for all but the bottom two problems 

Problem 
name 

2_step 
solution 

1_step 
(a) 

1_step 
(b) a*b 2_step 

Composition Effect 
a*b - 2_step 2_step/(a*b) 

Subst 
transfer 

trip 550/(h-2) 0.65 0.78 0.51 0.11 0.40 0.22 0.08 
class 62+62-f 0.75      0.70 0.53 0.13 0.40 0.25 0.12 
jackets d-1/3*d 0.58 0.54 0.29 0.16 0.13 0.56 -0.02 
sisters (72-m)/4 0.71 0.63 0.45 0.32 0.13 0.72 0.15 
rowboat 800-40m 0.75 0.55 0.38 0.28 0.10 0.73 0.07 
children (972+b)/5 0.66 0.75 0.5 0.38 0.12 0.76 0.09 
cds 5*12*c 0.71 0.74 0.52 0.52 0.00 1.00 0.14 
mcdonalds 5*h-7 0.66 0.85 0.56 0.72 -0.16 1.29 -0.06 
 
mx+b) and the cds form 5*12*c involves a repetition of the 
same operator which can be treated as a 1-operator solution, 
namely, 60c (as 17% of students did). Students may have 
specialized knowledge for producing these forms that do not 
require general recursive grammar knowledge. 

The final column (Subst transfer) shows how much 
substitution practice transferred to 2_step symbolization as 
computed by the difference in post-test scores on each 
problem for the two experimental groups.  

To test the hidden-skill-transfer hypothesis, we expect the 
cds and mcdonalds problems to show less transfer and the 
other problems to show more. While this is not strictly the 
case (cds shows transfer and jackets does not), there is a 
trend here that is illustrated in Figure 2.  It shows the 
relationship between difficulty variation in the composition 
process and variation in the amount of transfer produced by 
substitution practice in the close-the-loop experiment. To 
better highlight the point, the graph shows the data from the 
353 students at or above the median on the pre-test -- the 
ones for which improvement in composition skills should 
produce better post-test performance on 2_step story problems 
requiring such skills. 

Consistent with the hidden-skill-transfer hypothesis, there is no 
transfer benefit (first two bars in Figure 2) for the two problem 
forms with no composition effect (mcdonalds and cds). There is 
large transfer effect for the three problems (trip, sisters, and  
children) involving parentheses (last two bars), which present 
greater challenges for composing expressions and the need for  

students to acquire more complex implicit grammar structures for 
generating correct parenthetic expressions. There is an immediate 
transfer effect for the three problems (class, jackets, and rowboat) 
not involving parentheses (middle bars), consistent with the fewer 
composition skills required. Note that success on these problems 
is oddly lower overall. We return to this point in the learning 
curve analysis where we do some search for new difficulty factors 

 
Figure 2. Transfer is limited to the problems that show a 

composition effect in task difficulty comparisons. 
and hypothesize a new hidden skill that could be pursued in future 
close-the-loop instructional design. These results add to prior 
evidence [18] supporting the hypothesis that differences in task 
difficulty and transfer effects are observable manifestations of the 
same underlying KCs. 
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3.3 Learning Curve Analysis  
As a visual representation of student performance data over time 
(i.e., as opportunity increases, error rates are expected to 
decrease), learning curves can be used to explore areas of 
student difficulty and transfer of learning [21]. Following this 
prior work, we used the statistical model for learning curve 
prediction built into DataShop (see PSLCDataShop.org): The 
Additive Factors Model is a logistic regression model that 
generalizes Item Response Theory by having latent variables 
for knowledge component difficulty in place of item difficulty 
and by adding a third growth term, a knowledge component 
learning rate, in addition to the student proficiency and 
knowledge component difficulty terms. We evaluate four 
different knowledge component models in terms of their 
prediction fit to all of the test and instructional items each 
student experienced. For our metrics, we use root mean 
squared error (RMSE) averaged over 20 runs of 3-fold item-
stratified and student-stratified cross validation. Given the 
focus on understanding the difficulty and transfer 
characteristics of the task environment, we put particular value 
on predictive generalization across items (as item stratification 
achieves by randomly putting all data on each item in the same 
fold) but also report the predictive generalization across 
students (as student stratification achieves by randomly putting 
all data on each student in the same fold). 

The results of a learning curve analysis are shown in Table 3. 
The first row displays a simple baseline no-transfer model that 
treats each problem type (2_step, 1_step, and substitution) as 
requiring a different knowledge component (KC).  The second 
row displays a substitution transfer model that introduces 
transfer between substitution problems and 2_step problems by 
having a recursive grammar KC common to both problems. 
The 2_step problems have an additional KC for 
comprehending the story and the 1_step problems have a 
different unique KC. As shown in the last columns, this 
substitution transfer model produces a reduction in RMSE on 
the item stratified cross validation, down to 0.426 from 0.429. 
This small change is associated with a small change in the 
models and changes at this level (in the thousandths) have 
proven meaningful in producing a prior close-the-loop 
improvement [16]. This close-the-loop study provides further 
evidence that small prediction differences can be associated 
with significant learning gains. 

Corresponding with the discussion above regarding the unique 
challenges of solutions requiring parentheses, the paren-
enhanced model (third row in Table 3) adds a parenthesis KC 
to the 2_step and substitution versions of the trip, sisters, and 
children problems. Surprisingly, this model does not improve 
the item generalization (0.428 > 0.426), though it does improve 
student generalization (0.473 < 0.477). The predictions of this 
model fail to account for the variance in difficulty of the non-
parentheses problems. 

As mentioned above, we were surprised that a couple of the 
non-parentheses problems posed great difficulty. In particular, 
the class (62+62-f) and jackets (d-1/3d) problems were quite 
hard (13% and 16% correct before substitution instruction). 
We hypothesized the difficulty of these problems was due to a 
quantity being referenced twice in the solution expression (i.e., 
62  in the class problem and d in the jackets problem). To test 
this hypothesis we built the double-ref-enhanced model (fourth 
row in Table 3) by adding a double-ref KC to the paren-
enhanced model on both of the 2_step and substitution versions 

of the class and jackets problems. The result is a substantially 
better prediction than the prior model on both item 
generalization (0.416 < 0.428) and student generalization 
(0.468 < 0.473). 

Table 3. Knowledge component learning curve model 
comparison. 

 

KCs 

Recursive 
grammar 
skill for 

2_step & 
substitution 

Paren 
skill 

Double-
ref skill 

Item 
stratified 

CV 
(RMSE) 

Student 
stratified 

CV 
(RMSE) 

No-transfer 3 0 0 0 0.429 0.478 

Substitution 
transfer 

3 1 0 0 0.426 0.477 

Paren-
enhanced 

4 1 1 0 0.428 0.473 

Double-ref-
enhanced 

5 1 1 1 0.416 0.468 

We have not yet modeled, but have recognized an alternative 
or additional explanation for the difficulty of the class and 
jackets problems.  Right expanding forms, which require the 
“expression => quantity operator expression” rule, may be 
harder than left expanding forms, which require the 
“expression => expression operator quantity” rule.  This idea 
garners plausibility from cognitive theory given that right 
expanding forms may require more cognitive load to maintain 
the subexpression to be written (e.g., 62-f) while the first part 
is planned and written (e.g, “62 +”).  This analysis predicts that 
the trip, class, jackets, and rowboat problems should be more 
difficult and  they are the most difficult 2_step problems. 

Future analytic and modeling efforts should pursue these 
plausible new hidden skills hypotheses and, if confirmed, a 
close-the-loop study should test whether focused instruction on 
double reference problems and/or more practice on right 
expanding expressions yields better learning transfer. 

4. SUMMARY AND CONCLUSION  
It is worth noting that the control condition in this study is 
highly similar to the treatment. Many might say, if you practice 
algebra, you learn algebra. Under that simple analysis, no 
differences should be expected between the conditions.  
Further, this control condition is a highly plausible 
instructional approach supported by a straightforward rational 
task analysis and by many colleagues who predict it should 
work:  To prepare for story problems involving two operators, 
practice story problems involving one operator. The detailed 
data-driven quantitative cognitive task analysis suggested 
otherwise, in particular, that an inherent difficulty for algebra 
students learning to symbolize complex story problems is not 
in the story problem comprehension but in the production of 
more complex symbolic forms.  Isolated practice in producing 
such forms, as the substitution problems provide, should 
enhance this hidden cognitive skill and yield better transfer.  In 
a large data pool (711 students) collected in middle school 
math classes across four school years, our close-the-loop 
experiment demonstrated strong support for this data-driven 
prediction.  

Our analysis also provides support for cognitive and statistical 
models that use the same underlying latent constructs (e.g., 
knowledge components) to predict both task difficulty and 
task-to-task transfer. This result is not only important to the 
science of learning, but it has practical relevance to the goal of 
using data-driven discoveries about domain learning 
challenges to design instruction for learning transfer.  Task 
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difficulty data can be more easily collected than task-to-task 
transfer data. Ideal transfer data (i.e., comparing performance 
on task B when task A is or is not practiced before it) requires 
giving students curriculum sequences that may harm their 
learning, therefore, it is costly and ethically challenging. Task 
difficulty data, when appropriately modeled, provides promise 
that these cost and ethical challenges can be minimized.  

Although this paper does not present new data mining 
methods, it does indicate that attempts to automatically 
discover cognitive models, such as LFA [2] and others like it 
(e.g., Rule Space [22], Knowledge Spaces [24], and matrix 
factorization [6; 7]) can be used to generate instructional 
designs that improve student learning and transfer.  While 
innovation in data mining methods is a crucial part of EDM 
research, it is important to the health of the field and its 
relevance to society that we pursue more close-the-loop studies 
and keep the E in EDM!  
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